Advanced Venn Diagrams and Probability

Example 1: Given the spinner below, if Event A is spinning a multiple of 3, and Event B is spinning a multiple of 4, and event C is spinning a multiple of 5. Draw a Venn Diagram and determine the following probabilities:

13 14
17 19
$$A = 3, 6, 9, 12, 15, 18$$

 $B = 4, 8, 12, 16, 20$
 $C = 5, 10, (5), 20$

1.
$$P(A) = \frac{6}{20} = \frac{3}{10} = 0.3 = 30\%$$
 6. $P(A \setminus C) = \frac{5}{20} = \frac{1}{4} = 0.25 = 25\%$ 11. $P(A \mid C) = \frac{1}{4} = 0.25 = 25\%$

2.
$$P(B) = \frac{5}{20} = \frac{1}{4} = 0.25 = 25\%$$
 7. $P(A \cap B) = \frac{1}{20} = 0.05 = 5\%$ 12. $P(A|B) = \frac{1}{5} = 0.2 = 20\%$

3.
$$P(C) = \frac{4}{20} = \frac{1}{5} = 0.2 = 20\%$$
 8. $P(A \cup B) = \frac{10}{20} = \frac{1}{2} = 0.5 = 50\%$ 13. $P[(A \cup B) \mid C] = \frac{2}{4} = 1 = 0.5$

4.
$$P(A|B) = \frac{5}{20} = \frac{1}{4} = 0.25 = 25\%$$
 9. $P(A)' = \frac{14}{20} = \frac{7}{10} = 0.7 = 70\%$ 14. $P[(A \cup C)' \mid B] = \frac{3}{5} = 0.6 = 60\%$

5.
$$P(B|A) = \frac{1}{20} = \frac{1}{5} = 0.2 = 20\%$$
 10. $P(C|B) = \frac{1}{5} = 0.2 = 20\%$ 15. $P[(A|B)|C] = \frac{1}{4} = 0.25 = 25\%$

Example 2: <u>Using Algebra</u>: Given the following information, complete the Venn Diagram.

$$A = 15$$

$$B = 10$$

$$C = 20$$

$$A \cap B = 5$$

$$A \cap C = 4$$

$$B \cap C = 3$$

$$A \cap B \cap C = x$$

$$U = 35$$

A 15 - [(5-x)+(4-x)+x]

$$= 15 - (9 - x)$$

$$C)$$
 = $(4-x)+(3-x)+x$

$$\begin{array}{l}
B & 10 - [(5-x) + (3-x) + x] \\
= & 10 - [5-3] + 3-x + x] \\
= & 10 - [8-x] \\
= & 10 - 8 + x \\
= & 2 + x
\end{array}$$

$$= 33 + \times$$

$$AUBUC = 35$$

 $35 = 33 + \times$
 $35 - 33 = \times$

Example 3: The Venn diagram represents the responses to a survey. What is the probability associated with A\C and how many people were involved in the survey?

$$P(A \setminus C) = \frac{15}{60}$$
 = 12+3+10+5+10+2+8+10
= $\frac{1}{4}$ = 60 people were involved
in the survey
= 25%

Example 4: One hundred students were surveyed at a university to determine if they visited the websites of any of the following 3 news agencies: CBC, GLOBAL NEWS, or CTV. The results of the survey are shown in the Venn Diagram. Find the probability that:

- a) A student uses all 3 websites.
- b) A student does not use the Global News website.
- c) A student uses either CBC or CTV but not both.

a)
$$P(ANBNC) = \frac{5}{100} = 0.05 = 5\%$$

$$= \frac{62}{100}$$

$$= 0.62$$

$$= 62\%$$

c)
$$P[(A \setminus B) \cup (B \setminus A)] = \frac{13+11+22+2}{100}$$

= $\frac{48}{100}$
= 0.48
= $\frac{48\%}{6}$

Example 5: One hundred senior high school students were surveyed to find out which optional courses they planned to

15

6

8

7

28

5

12

19

take:

- (D) Digital Film-Making
- (R) Rock Band
- (Y) Yoga, Health and Well-Being

Create a Venn Diagram to show the following results:

28 chose (Y) only	8 chose (D) and (R)
15 chose (D) only	5 chose (R) and (Y)
12 chose (R) only	7 chose (D) (R) and (Y)
6 chose (Y) and (D)	The rest chose none of these

$$P(b) = \frac{15+8+6+7}{100} = \frac{36}{100} = 0.36 = 36\%$$

$$P(R) = \frac{8+7+5+12}{100} = \frac{32}{100} = 0.32 = 32\%$$

$$P(y) = \frac{6+7+5+28}{100} = \frac{46}{100} = 0.46 = 46\%$$

$$P(A') = \frac{17}{25} = \frac{34}{50} = P(A) = \frac{50-34}{50} = \frac{16}{50}$$

$$P(A \cap B \cap C) = \frac{1}{50}$$

$$P (A\C) = \frac{13}{50}$$

$$P(C \mid B) = \frac{22}{50}$$

$$P(C) = \frac{13}{25} = \frac{26}{50}$$

50-9-4-2-1-3-26-5 = 6