Step 4-Graphing Inequalities and Polygons of Constraints

CHAPTER 1

Slope-Intercept Form of a Line

Review

- slope
$a=\frac{y 2-y 1}{x 2-x 1}$

$$
\begin{aligned}
& y=a x+b \text { OR } y=m x+b \\
& a=\text { slope } \\
& b=y-\text { intercept }
\end{aligned}
$$

MATHKETBALL

1. Test yourself to see how much you remember.
2. If you are alone, play for both the red and blue teams. If you are Zooming with a friend, share you screen and play against each other.

Play Mathketball

http://www.math-play.com/slope-intercept-game.html

Ex. 1 What is the slope of the line?

$$
8 x-3+2 y=0
$$

$$
\frac{2 y}{2}=\frac{-8 x+3}{2}
$$

slope $=-4$

$$
\begin{gathered}
y=-4 x+\frac{3}{2} \\
\mathbb{\pi} \\
a
\end{gathered}
$$

Slopes

rises (increasing): positive slope
falls (decreasing): negative slope
horizontal
line:
\longleftrightarrow slope = zero OR $y=0 x+b$
vertical line:
slope = undefined

Slope of a line that is Perpendicular to another line

$$
\text { ex } 1: \frac{2}{1} \rightarrow-\frac{1}{2}
$$

- Negative Reciprocal

$$
\text { ex 2: }-\frac{1}{3} \rightarrow \frac{3}{1}
$$

Slope of a line that is Parallel to another line

- Slope of both lines are the SAME!

Classwork/Homework

MHS worksheets from Chapter 1

- Introduction to Linear Functions
- Slope of a Line
- Slope-Intercept form of a Line

Review these worksheets and make sure you can do them really easily-you should be zipping through them before you move on to the next section.

Meaning

$<$
\leq
$>$
\geq
less than
less than or equal to greater than
greater than or equal to

Inequality Wars

http://www.xpmath.com/fo rums/arcade.php?do=play\& gameid=87

- Solve inequalities like equations except for:

1. Inequality signs
2. If dividing $O R$ multiplying by a negative number, flip the inequality sign.

Solve the inequalities

$$
\text { Ex. 1: } \begin{aligned}
2 \mathrm{x}+5 & >7 \\
2 x & >7-5 \\
\frac{2 x}{2} & >\frac{2}{2} \\
x & >1
\end{aligned}
$$

Ex. 2:

$$
\begin{aligned}
4-3 \mathrm{x}+1 & >2 \\
-3 x+5 & >2 \\
-3 x & >2-5 \\
-3 x & >-3 \\
-3 & -3 \\
x & <1
\end{aligned}
$$

Classwork/Homework

- Solving One-Variable First Degree Inequalities

$$
\text { \# 1, 3, 5, 7, } 9 \text { and } 10
$$

- Do the rest of the problems in this worksheet if you are not
flying through these questions (max: 15 mins).

CHAPTER 1

Graphing Linear Inequalities

Graphing Inequalities

BASIC How to-Graphing Inequalities

1. Graph the line (put it in function form first)
2. Shade all included values

Shade, Shade, Shade, Shade It

- http://www.teachertube.com/video/shade-it-121267

DETAILED How to:
 Graphing Linear Inequalities

A. Change the inequality into slope-intercept (function) form,
B. $f(x)=a x+b$. When solving, if dividing OR multiplying by a negative number, flip the inequality sign. Graph the equation.
C. If $>$ or $<$ then the line should be dashed.
D. If \geq or \leq then the line should be solid.
E. If $f(x)>a x+b$ or $f(x) \geq a x+b$, shade above the line.
F. If $f(x)<a x+b$ or $f(x) \leq a x+b$, shade below the line.
G. To check that the shading is correct, pick a point clearly on one side of the line, plug it into the inequality and solve. Choose $(0,0)$ if it's not on the line.

- If TRUE, shade TOWARD THE POINT
- If FALSE, shade AWAY FROM THE POINT

Special Case

Sketch a graph of $\mathrm{y} \geq 3$

Special Case

Graph $x<2$

Step 1: Start by graphing the line $\mathrm{x}=2$

Now what points would give you less than 2 ?

Since it has to be $x<2$ we shade everything to the left of the line.

Graph $y \geq-3 x+2$ on the Cartesian plane.

Boundary Line

FALSE (shade away from test point)

Shade, Shade, Shade, Shade It

- http://www.teachertube.com/video/shade-it-121267

Chapter 2

Polygon of Constraints ~Level 2

What is a polygon of constraints?

- A system (2 or more) of inequalities graphed on the same Cartesian Plane.
- The solution (answer) of a polygon of constraints is where all the shading overlaps.

TRANSLATION: We have some rules (constraints/inequalities) to follow, if we follow all these rules, our answer is when we follow all the rules at the same time.

- Example:

Dress Code Rules

1. black or white
2. solid color
3. collar
4. no leggings
5. no jeans

How to-Polygon of Contraints

I. Graph all the constraints (inequalities) on the same Cartesian Plane (label axes, origin, scale, lines).
II. Use arrows to indicate where the shading should go.
III. Color in (shade) the area where the shading OVERLAPS.
IV. Possible solutions:
a) Points in the overlapping shaded area
b) Points on the solid lines, NOT DASHED lines

Graph the following system of inequalities.

$$
\begin{gathered}
y>2 x+3 \\
y \leq 9 \\
x \geq-6
\end{gathered}
$$

Where are the possible solutions (answers) for this polygon of constraints?

- blue shaded area
- on the line $x=-6$
- on the line $y=9$
- NOT on the line $y=2 x+3$

Bounded vs Unbounded Solutions

- Unbounded solutions: shading goes on forever

- Bounded solutions: are solid shapes

Classwork/Homework

- Polygons of Constraints (BASIC) WORKSHEET, the link is on my website

Graph the following system of inequalities.
$x \geq 0$.
$y \geq 0$
$x>2$.
$y<8$.
$y \geq 3 x-10 \ldots$
Identify the vertices (corners) of the polygon of constraints (A, B, C, D).

Classwork/Homework

- MHS worksheets "Graphing Polygons of Constraints ~Level 2" p. 69 \#1-10

