Step 5-Intersection Points and Putting it all Together Steps 1-5

CHAPTERS 1 \& 2

THIS IS STEP 5 ...only 2 steps left

1. Define the variables.
2. Decide if it is a "Real-Life Situation", if yes, add $x \geq 0, y \geq 0$.
3.Translate the word problem into inequalities. (REMEMBER: "Number Of", "Cost" and "Proportion" Inequalities)
3. Graph the inequalities on a Cartesian Plane to form the polygon of constraints.
4. Find/calculate the vertices (graphically, comparison, substitution, or elimination)

Steps for Comparison Method $y=y$

Use when both equations are in function form

1. Make both equations equal to each other.
2. Solve for x
3. Plug in x (in an original equation) and solve for y.
4. Answer: (x, y)

Example: $\left\{\begin{array}{l}y=2 x+3 \\ y=6 x-5\end{array}\right.$

$$
\begin{aligned}
2 x+3 & =6 x-5 & & y=2 x+3 \\
2 x-6 x & =-5-3 & & y=2(2)+3 \\
-4 x & =-8 & & y=4+3 \\
\frac{-4 x}{-4} & =\frac{-8}{-4} & & y=7 \\
x & =2 & & (x, y)=(2,7)
\end{aligned}
$$

Classwork/Homework

- MHS Worksheet Chapter 1-"Comparison Method" \#1-10
- Optional-depends on how much you remember from last year

Like a substitute teacher, coming in to teach. The substitute replaces the teacher.

Steps for Substitution Method

Use when one equation is in function form

 (or $x=\ldots$), the other is not.1. Substitute $y=$ or $x=$ in the other equation.
2. Solve for the first variable
3. Then solve for the second variable
4. Answer: (x, y)

"I presume you're the substitute teacher?"

Example $1\left\{\begin{array}{l}y=2 x+1 \\ 6 x+2 y=12\end{array}\right.$

$$
\begin{aligned}
6 x+2(2 x+1) & =12 & & y=2 x+1 \\
6 x+4 x+2 & =12 & & y=2(1)+1 \\
10 x+2 & =12 & & y=3 \\
10 x & =12-2 & & \\
10 x & =10 & & \\
\frac{10 x}{10} & =\frac{10}{10} & & \text { Answer }:(x, y)=(1,3) \\
x & =1 & &
\end{aligned}
$$

Classwork/Homework

- MHS Worksheet—Chapter 1—Substitution Method \#1-10
- Optional-depends on how much you remember from last year

Steps for Elimination Method

Use when both equations are in general form.

1. Line up equations over one another
(x over x, y over y, number over number)
2. Multiply both equations by a number that makes one of the variables disappear when you add the equations together.

$$
\begin{aligned}
& 4(-3 x+2 y=5) \\
& 3(4 x-y=10)
\end{aligned}
$$

Taylor's Trick:

$$
\begin{array}{ll}
+(+ & +(- \\
-(+ & -(- \\
+(+ & +(- \\
+(- & +(+
\end{array}
$$

Example:

$$
\begin{aligned}
& \frac{4 \chi^{(-3 x+2 y=5)}(4 x-y=10)}{-12 x+8 y=20}+ \\
& 4 x-y=10 \\
& 4 x-10=10 \\
& 4 x=10+10 \\
& 4 x=20 \\
& \frac{4 x}{4}=\frac{20}{4} \\
& x=5 \\
& \frac{5 y}{5}=\frac{50}{5} \\
& y=10 \\
& (x, y)=(5,10)
\end{aligned}
$$

Halloween Systems of Equations GAME

- http://www.math-play.com/system-of-equations-halloween-math-game/system-of-equations-halloween-math-game.html

Putting it all togetherSummary

STEPS 1-5

STEPS 1-5 LINEAR PROGRAMMING

1. Define the variables.
2. Decide if it is a "Real-Life Situation", if yes, add $x \geq 0, y \geq 0$.
3.Translate the word problem into inequalities. (REMEMBER:
"Number Of", "Cost" and "Proportion" Inequalities)
3. Graph the inequalities on a Cartesian Plane to form the polygon of constraints.
4. Find/calculate the vertices (graphically, comparison, substitution, or elimination)

On weekends, Andy does some babysitting to earn pocket money. He charges $\$ 4 / \mathrm{h}$ in the daytime and $\$ 5 / \mathrm{h}$ at night. Next month, Andy expects to be able to babysit for a maximum of 12 h during the day and a maximum of 10 h at night. He hopes to earn a minimum of $\$ 60$.

Let $x=$ number of daytime hours
Let $y=$ number of nighttime hours
$x \geq 0$
$y \geq 0$
$x \leq 12$
$y \leq 10$
$4 x+5 y \geq 60$

$$
\begin{aligned}
& y=10 \\
& 4 x+5 y=60 \\
& 4 x+5 y=60 \\
& 4 x+5(10)=60 \\
& 4 x+50=60 \\
& 4 x=60-50 \\
& 4 x=10 \\
& \frac{4 x}{4}=\frac{10}{4} \\
& x=\frac{10}{4}
\end{aligned}
$$

$$
\begin{aligned}
& x=12 \\
& y=10
\end{aligned}
$$

$$
\begin{aligned}
& x=12 \\
& 4 x+5 y=60 \\
& 4 x+5 y=60 \\
& 4(12)+5 y=60 \\
& 48+5 y=60 \\
& 5 y=60-48 \\
& 5 y=12 \\
& \frac{5 y}{5}=\frac{12}{5} \\
& y=\frac{12}{5}
\end{aligned}
$$

Classwork/Homework

- None for this section, it is just to give you an idea how it all fits together, we have two more steps left before we start doing full word problems.

